Go to the documentation of this file.
11 #ifndef __MITTELMANNBNDRYCNTRLDIRI3DSIN_HPP__
12 #define __MITTELMANNBNDRYCNTRLDIRI3DSIN_HPP__
19 #include "configall_system.h"
28 # error "don't have header file for math"
38 # error "don't have header file for stdio"
42 using namespace Ipopt;
108 bool& use_x_scaling,
Index n,
110 bool& use_g_scaling,
Index m,
186 return k + (N_+2)*j + (N_+2)*(N_+2)*i;
192 return (k-1) + N_*(j-1) + N_*N_*(i-1);
225 printf(
"N has to be at least 1.");
228 printf(
"olaf N %d has to be at least 1.", N);
235 SetBaseParameters(N, alpha, lb_y, ub_y, lb_u, ub_u, d_const);
242 return 3. + 5.*(x1*(x1-1.)*x2*(x2-1.)*x3*(x3-1.));
Class to organize all the data required by the algorithm.
virtual Number y_d_cont(Number x1, Number x2, Number x3) const =0
Target profile function for y.
Index y_index(Index i, Index j, Index k) const
Translation of mesh point indices to NLP variable indices for y(x_ijk)
virtual void finalize_solution(SolverReturn status, Index n, const Number *x, const Number *z_L, const Number *z_U, Index m, const Number *g, const Number *lambda, Number obj_valu, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq)
This method is called after the optimization, and could write an output file with the optimal profile...
Class implemented the NLP discretization of.
Class for all IPOPT specific calculated quantities.
Number lb_u_
overall lower bound on u
Number alpha_
Weighting parameter for the control target deviation functional in the objective.
double Number
Type of all numbers.
Number * y_d_
Array for the target profile for y.
virtual bool eval_grad_f(Index n, const Number *x, bool new_x, Number *grad_f)
Method to return the gradient of the objective.
Number * x
Input: Starting point Output: Optimal solution.
Number Number Index Number Number Index Index nele_hess
Number of non-zero elements in Hessian of Lagrangian.
Number Number Index Number Number Index nele_jac
Number of non-zero elements in constraint Jacobian.
int Index
Type of all indices of vectors, matrices etc.
virtual bool InitializeProblem(Index N)
Initialize internal parameters, where N is a parameter determining the problme size.
Number x2_grid(Index i) const
Compute the grid coordinate for given index in x2 direction.
Number ub_y_
overall upper bound on y
MittelmannBndryCntrlDiri3Dsin & operator=(const MittelmannBndryCntrlDiri3Dsin &)
MittelmannBndryCntrlDiriBase3Dsin()
Constructor.
Number d_const_
Constant value of d appearing in elliptical equation.
Number x3_grid(Index i) const
Compute the grid coordinate for given index in x3 direction.
Index pde_index(Index i, Index j, Index k) const
Translation of interior mesh point indices to the corresponding PDE constraint number.
virtual bool eval_f(Index n, const Number *x, bool new_x, Number &obj_value)
Method to return the objective value.
virtual ~MittelmannBndryCntrlDiriBase3Dsin()
Default destructor.
void SetBaseParameters(Index N, Number alpha, Number lb_y, Number ub_y, Number lb_u, Number ub_u, Number d_const)
Method for setting the internal parameters that define the problem.
Number x1_grid(Index i) const
Compute the grid coordinate for given index in x1 direction.
virtual Number y_d_cont(Number x1, Number x2, Number x3) const
Target profile function for y.
virtual bool eval_h(Index n, const Number *x, bool new_x, Number obj_factor, Index m, const Number *lambda, bool new_lambda, Index nele_hess, Index *iRow, Index *jCol, Number *values)
Method to return: 1) The structure of the hessian of the lagrangian (if "values" is NULL) 2) The valu...
MittelmannBndryCntrlDiri3Dsin()
Number Number Number * g_scaling
MittelmannBndryCntrlDiriBase3Dsin & operator=(const MittelmannBndryCntrlDiriBase3Dsin &)
Class implementating Example 1.
Number Number * g
Values of constraint at final point (output only - ignored if set to NULL)
MittelmannBndryCntrlDiri3Dsin(const MittelmannBndryCntrlDiri3Dsin &)
IndexStyleEnum
overload this method to return the number of variables and constraints, and the number of non-zeros i...
Number lb_y_
overall lower bound on y
MittelmannBndryCntrlDiriBase3Dsin(const MittelmannBndryCntrlDiriBase3Dsin &)
virtual bool get_starting_point(Index n, bool init_x, Number *x, bool init_z, Number *z_L, Number *z_U, Index m, bool init_lambda, Number *lambda)
Method to return the starting point for the algorithm.
Number ub_u_
overall upper bound on u
virtual ~MittelmannBndryCntrlDiri3Dsin()
SolverReturn
enum for the return from the optimize algorithm (obviously we need to add more)
virtual bool get_bounds_info(Index n, Number *x_l, Number *x_u, Index m, Number *g_l, Number *g_u)
Method to return the bounds for my problem.
virtual bool eval_g(Index n, const Number *x, bool new_x, Index m, Number *g)
Method to return the constraint residuals.
virtual bool get_scaling_parameters(Number &obj_scaling, bool &use_x_scaling, Index n, Number *x_scaling, bool &use_g_scaling, Index m, Number *g_scaling)
Method for returning scaling parameters.
virtual bool eval_jac_g(Index n, const Number *x, bool new_x, Index m, Index nele_jac, Index *iRow, Index *jCol, Number *values)
Method to return: 1) The structure of the jacobian (if "values" is NULL) 2) The values of the jacobia...
Number Number Index Number Number Index Index Index index_style
indexing style for iRow & jCol, 0 for C style, 1 for Fortran style
Index N_
Number of mesh points in one dimension (excluding boundary)
Number Number * x_scaling
Base class for boundary control problems with Dirichlet boundary conditions, as formulated by Hans Mi...
Number Number Index m
Number of constraints.
virtual bool get_nlp_info(Index &n, Index &m, Index &nnz_jac_g, Index &nnz_h_lag, IndexStyleEnum &index_style)
Method to return some info about the nlp.