
geoplot: cartography in gretl

version 1.1

Allin Cottrell and Jack Lucchetti

February 29, 2024

This document describes the geoplot addon package for gretl, introduced in version 2020c. We have found
it preferable, for reasons of efficiency, to implement its core mapping functionality via built-in functions,
coded in C. For basic usage, therefore, it’s not necessary to load the package explicitly via “include
geoplot.gfn”, as one would usually expect for an addon.

Section 1 in this document is meant to give the reader a quick introduction to the main cartographic
features we offer. In order to produce more refined maps, however, we provide more specialized facilities
that are explained in the rest of the document.

Section 2 below covers some preliminaries which we hope will help the reader understand the basics of
cartography via gretl. Section 3 describes the basic workflow for producing a map image. Section 4
then provides a simple worked example and section 5 addresses a potential stumbling block. Section 6
goes over in detail the options to the core geoplot function; section 7 discusses some spcifics of plotting
qualitative data; section 8 tells you what’s available via gretl’s graphical interface; and section 9 explains
some “expert” refinements. Three appendices cover some technical points that may be of interest to
expert users.

1 Quick start

The sample file us2020.geojson contains the main results of the 2020 presidential elections in the US.
If you open it via the command

open us2020.geojson --frompkg=geoplot

you will see a dataset that looks very much like an ordinary gretl dataset:

name region dem biden rep

1 Maryland South 0.6536 1 0.3215

2 Minnesota Midwest 0.5240 1 0.4528

3 Montana West 0.4055 0 0.5692

4 North Dakota Midwest 0.3178 0 0.6512

5 Hawaii West 0.6373 1 0.3427

6 Idaho West 0.3307 0 0.6384
...

In fact this dataset is special, since it also contains cartographic information “in the background”. The
question of how to create such a file will be dealt with in Sections 2 and 3, but for the moment let’s just
skip this point.

To plot a thematic map for the share of votes received by the Republicans in each state, you could simply
open a console and type

1



geoplot(rep)

and a plot like the one shown in Figure 1 should appear on your screen. Achieving the same via the GUI
is quite easy; we’ll deal with this in Section 8.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Figure 1: Output of the geoplot(rep) command

The interpretation of the map in Figure 1 should be obvious, with “hotter” colors for the states where
the Republican party enjoyed more support, as shown by the legend to the right of the map. If we try
the same with the region variable via

geoplot(region)

we get a map similar to Figure 2. In this case the colors are the same for states in the same US region:
note that the format of the legend has also changed appropriately. The difference is due to the fact
that rep is a quantitative variable, while region is qualitative (and string-valued). Gretl is aware of the
difference and plots the map with the appropriate adjustments. A similar example that you can try by
yourself is plotting a map for the binary variable biden. More on this in Section 7.

South
Midwest

West
Northeast

Figure 2: Output of the geoplot(region) command

Many details of the maps—such as their color scheme, size, and so on—can be customized to the user’s
needs. To this aim, you can supply an options bundle to the geoplot function to inflect its behavior. For
example, the line

geoplot(dem, _(palette="blues"))

produces something like Figure 3. In this case, we use the palette option to represent the degree of
Democratic support by shades of blue. The available options and their meaning are explained in section 6.

And now, let’s take a deeper look under the hood.

2



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Figure 3: Output of the geoplot(dem, _(palette="blues")) command

2 Preliminaries

Given gretl’s user base and vocation, we assume that people will be primarily interested in “thematic”
maps, in which geographical areas get different colors according to some variable of interest (for example
regions of a country are colored according to their unemployment rates). Fancier maps are out of scope
for the present. From here on we’ll simply refer to maps of this sort as “maps” and the geographical
entities they contain (which may be countries, states, counties, länder or whatever) as “regions”. Plotting
a map typically involves drawing a number of polygons, filled with appropriate colors, to some device
(the screen, or a file).

The essential ingredients for doing this are

1. A geometrical description of the regions.

2. The data for coloring the polygons.

3. Appropriate software for producing the map.

2.1 The geometry

Let’s say we have n regions, indexed by i. Region i is represented geometrically as a collection of ki
polygons (think islands in an archipelago), indexed by j. Each polygon is defined by hi,j coordinates.
Typically, each coordinate vector has two elements, latitude and longitude.

The information on each region has two components:

Metadata At minimum this should include the region’s identifier(s), as strings and/or numerical codes.
Other information, such as land area, may also be included. You can think of this as a dataset with
n observations and several variables, possibly string-valued.

Polygons A representation of the region’s shape on the map, in the form of one or more polygons, each
taking the form of an array of X–Y pairs, typically latitude and longitude. You can think of this
as an array of arrays of 2-column matrices: the outer array is of size n; inner array i contains ki
matrices, each with two columns.

Several file formats can be used for storing the geometry information.1 Gretl supports what are probably
the two most common formats:

� GeoJSON files: these are plain JSON files with an internal structure specified by RFC 7946. Such a
file takes the form of an array of regions (or “features”), with each element containing the metadata
under the key properties and the polygons under the key geometry.

1The site https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-

statistical-units/nuts offers a nice collection for European NUTS regions (NUTS = Nomenclature of Territorial
Units for Statistics).

3

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts


� ESRI shapefiles: these come as collections of several files, usually zipped together. The essential
components are an xBase file, with dbf extension, holding the metadata; the shapefile proper
with extension shp, holding the polygons; and an index file with extension shx, used to speed up
operations when reading the data. The website https://gadm.org/ offers a huge collection of such
files.

2.2 The payload data

By“payload”we mean the data used for coloring the regions. We assume that the payload is available as a
gretl series. This typically means that the user has a data file (in native gdt format or some other format
gretl can read) in which each line represents a region, as illustrated in Table 1. Note in particular the “id”
column. We assume that the map metadata contain sufficient information to establish a correspondence
with the dataset containing the payload: either a numerical code or a suitable string-valued variable.
One thing one quickly learns in exploring a variety of geojson and shp files is that there’s no telling how
the regions will be ordered; one cannot assume that they occur in what one might think of as “standard”
order (e.g. alphabetical order for US states).

id State Pop2019 Pop2010

1 Alabama 4903185 4779736

2 Alaska 731545 710231

101 American Samoa 55641 55519

3 Arizona 6278717 6392017

4 Arkansas 3017825 2915918

5 California 39512223 37254523

6 Colorado 5758736 5029196

7 Connecticut 3565287 3574097
...

Table 1: Typical format for a payload dataset

2.3 The software backend

In principle one could represent maps using any one of the many plotting libraries available, but gretl
uses gnuplot, which we already use for all other kinds of plot. Some insight into the gnuplot commands
we use can be gained from Appendix A.

Given the geometry data and the payload, writing a gnuplot script for producing the map is straightfor-
ward. And in most cases gnuplot can produce a plot in short order. You might have to wait a little if
there are many regions, of complex shapes, represented in high precision in the source map file.

3 The workflow

Typical workflow for producing a thematic map in gretl is likely to be as follows.

1. You open the map-datafile as a gretl dataset; this reads in the metadata so gretl’s $nobs will be
equal to the number of regions, n.

2. You add the payload data, via the append or join commands or in some other way.

3. You decide on some details of your map (appearance, format, etc.), with sensible defaults being
available.

4. You create the map.

4

https://gadm.org/


5. Optionally, you can save the data in gretl’s native gdt format (but see below).

Point 1 is handled by using the open command on the map-datafile. The filename extensions recognized
for this purpose are json or geojson for GeoJSON files, and dbf or shp for ESRI shapefiles.2 Point 2 is
also handled by standard gretl commands.

Points 3 and 4 are handled by the geoplot function, which can be called in either of two ways, corre-
sponding to these two signatures:

function void geoplot(const series payload[null], const bundle options[null])

function void geoplot(string mapfile, const series payload[null],

const bundle options[null])

The first case is applicable if the map to be shown has already been loaded as a gretl dataset. The second
case is required if you want to use a map file which has not been so loaded: then you need to give its
name. The payload argument is the (optional) series with which to colorize the polygons, and options

is an (optional) bundle to contain one or more elements governing the appearance or destination of the
plot.

� If the payload argument is given as null or omitted then the map is drawn “as is”, without any
colorization. This can be useful if you just want to see what the polygons look like.

� If the options bundle is omitted all options are set to their default values—which means, among
other things, that you see the map on screen but nothing is saved. For full details on the available
options see section 6.

Note that once a map is loaded as a dataset you can retrieve its filename using the $mapfile accessor.
This is convenient if you wish to read the full content of the file (including the polygons) as a bundle:

bundle b = bread($mapfile)

Finally, a cautionary note on point 5 above: the saved gdt file will not contain the geometry information,
but rather a pointer to the appropriate file (GeoJSON or shapefile). As a consequence, as long as the file
holding the polygon info remains in the same place, you can simply re-open your gdt file and create new
maps. However, you can’t send it to someone else and expect it to work for map creation, unless you also
supply them with the original geometry file.

4 An example

For this example we’ll produce a map showing GDP per capita of the six founder countries of the EU,
using three files: script founders.inp, data file founders.csv and map founders.geojson. In this case
the required files are small enough to be readily inspected by hand. The content of founders.csv, which
holds what will be the payload, is shown in Listing 1.

The JSON file is too big to show here in full but small enough to examine in any text editor; listing 2
contains a representative excerpt. Note that while Belgium is a single polygon France is an array of
polygons (“MultiPolygon”), because of Corsica.

The founders.inp script is shown in Listing 3, and what we get after opening the geojson file in gretl
is in Listing 4.

Next, we perform a join operation with FID (from the JSON file) as the inner key and code (from the
CSV file) as the outer key. Finally, we call the geoplot function to create an on-screen map. We specify
the payload to colorize and via the options argument we add a couple of points: the gnuplot input

2In principle we could read the polygons at this point and store them in RAM, but for now we don’t. We just read in
the metadata, but store the path to the associated geometry file internally.

5



Name,code,pop,area,gdp

Belgium,BE,11365834,30528,534230

France,FR,67024633,632833,2833687

Germany,DE,82437641,357386,3874437

Italy,IT,61219113,301338,2147744

Luxembourg,LU,589370,2586.4,65683

Netherlands,NL,17220721,41543,880716

Listing 1: Content of founders.csv

{"type": "FeatureCollection", "features": [

{"geometry": {"type": "Polygon", "coordinates": [[[40.40360,

30.79039], [40.59686, 30.49366], [40.65087, 30.29746], ... ]]},

"type": "Feature", "properties": {"CNTR_NAME": "Belgique",

"ISO3_CODE": "BEL", "CNTR_ID": "BE", "NAME_ENGL": "Belgium",

"FID": "BE"}, "id": "BE"},

{"geometry": {"type": "MultiPolygon", "coordinates": [[[[40.18497,

29.45664], [40.23634, 29.39875], [40.57754, 29.35021], ...],

[[[42.66689, 20.70300], [42.57348, 20.41660], ...]]},

"type": "Feature", "properties": {"CNTR_NAME": "France",

"ISO3_CODE": "FRA", "CNTR_ID": "FR", "NAME_ENGL": "France",

"FID": "FR"}, "id": "FR"},

...

Listing 2: Excerpt of founders.geojson

open founders.geojson --frompkg=geoplot

join founders.csv gdp pop --ikey=FID --okey=code

series gdppc = 1000*gdp/pop

opts = _(plotfile = "GDPpc.plt", inlined = 1)

geoplot(gdppc, opts)

Listing 3: Content of founders.inp

CNTR_NAME ISO3_CODE CNTR_ID NAME_ENGL FID

1 Belgique BEL BE Belgium BE

2 France FRA FR France FR

3 Deutschland DEU DE Germany DE

4 Italia ITA IT Italy IT

5 Luxemburg LUX LU Luxembourg LU

6 Nederland NLD NL Netherlands NL

Listing 4: The “founders” metadata

6



file should be saved under the name GDPpc.plt, and the geometry data should be “inlined” in this file,
making it self-contained.

Running the script will produce a gnuplot file resembling the following:

set term wxt persist

unset key

set cbrange [33.3288:117.018]

set xrange [31.7826:51.4213]

set yrange [14.7701:36.0553]

$MapData << EOD

40.4036 30.79039 47.00315

40.59686 30.49366 47.00315

[...]

38.92268 31.40258 51.142806

38.59809 31.50169 51.142806

38.59737 31.60855 51.142806

EOD

plot for [i=0:*] $MapData index i with filledcurves fc palette, \

$MapData using 1:2 with lines lc "white" lw 1

and feeding the above into gnuplot yields the map shown in Figure 4.

 40

 50

 60

 70

 80

 90

 100

 110

Figure 4: Output of script founders.inp (default gnuplot palette)

7



5 Ensuring correct alignment

In order to produce a correct map it is essential that everything be aligned properly: the map metadata,
the payload series, and the geometries of the regions. “Region i”must have the same referent in all three
contexts.

If the source map (GeoJSON or shapefile) is not broken we can assume that the original metadata and
the geometries are indeed aligned correctly. But problems may arise (a) in aligning the payload and (b)
if one wishes to exclude some regions from the map. We discuss these issues in turn.

5.1 Aligning the payload

If the payload you wish to plot is already included in the map metadata, there’s no problem. But when
the map data and the payload come from different sources it may be tricky to get them aligned properly.
This problem is not specific to the mapping apparatus—it’s a more general issue concerning the matching
of data from different sources, addressed at length in the chapter titled “Joining data sources” in the the
Gretl User’s Guide—but it may be helpful to offer a few comments here.

As mentioned above, the relevant tools provided by gretl are append and join. A simple append will work
only if the regions appear in the same order in the map and payload datasets. This is fairly easily checked
if the number of regions is small and each dataset contains readily comparable identifiers. Otherwise—if
the orders clearly differ or it’s hard to tell—it will be necessary to use join.

Look back at Listing 3. In that case the map and payload datasets contained the same set of two-letter
identifiers for the countries—albeit under different names, FID and code—so join using the --ikey and
--okey options worked fine. In a different case, however, the respective identifiers may not match up.
For example, region names might be in English in one dataset and in, say, Italian in the other. Then
you’ll have to exercise your intelligence, but one idea is to create an intermediate “Rosetta stone” file,
maybe as CSV, giving the mapping between the two identifiers, as in:

# rosetta.csv

ID_en,ID_it

Apulia,Puglia

Sardinia,Sardegna

...

Then you can join the Rosetta file to the map dataset, hence adding the required identifier that’s initially
lacking.

5.2 Sub-sampling

In some cases one may wish to leave out certain outlying regions. For example, it’s quite common to
produce thematic maps of the USA that omit Hawaii, and perhaps Alaska. In principle leaving out
regions threatens to break the required alignment of payload and geometry, but this is handled as follows:
if you sub-sample the map dataset using the smpl command, geoplot automatically drops the associated
polygons from the plot.

This is illustrated in Listing 5. Figure 5 shows the results with and without exclusion of Alaska and
Hawaii.3

A related case is where the payload value is missing (NA) for one or more regions. Here you have a choice.
By default, regions whose payload is NA are shown in outline, not colored, but either of two alternatives
can be selected by passing a string under the key missvals in the options bundle: if the value is "skip"
the affected regions are omitted; if it’s "fill" they are colored gray. (The value "outline" may be given,
confirming the default.)

3Given the role of this example we don’t bother adding a real payload, but just simulate data using the normal function.

8



open us-states.geojson --quiet --frompkg=geoplot

x = normal() # fake up some data!

opts = _(plotfile = "us0.plt", palette = "blues")

# show the entire USA

opts.title = "USA (complete)"

geoplot(x, opts)

# skip Alaska and Hawaii

smpl postal != "AK" && postal != "HI" --restrict

opts.title = "USA (mainland)"

opts.plotfile = "us1.plt"

geoplot(x, opts)

Listing 5: US maps, complete vs contiguous states

USA (complete)

-3

-2

-1

 0

 1

 2

 3

USA (mainland)

-3

-2

-1

 0

 1

 2

Figure 5: Output of Listing 5

9



6 Options for the geoplot function

We first present all the currently supported options in alphabetical order. Below the listing we give some
further explanation of the usage of plotfile, show and inlined.

border: boolean, show a rectangular border around the map. Default: true.

height: scalar, giving the height of the plot in pixels. Default: 600. Even if the desired output is a vector
graphic (PDF or EPS) rather than a bitmap (see plotfile below), setting this value relative to
the default can be used to adjust the size of the plot. For example height = 400 will give a PDF
graphic that’s two-thirds of the default size.

inlined: boolean, to have the polygon data written directly into the gnuplot file. Default: false, the data
are read from a separate file.

keypos: string, specifying the position of the key for discrete plot colors (relevant only when plotting
qualitative data; see Section 7). This string must be a valid argument to gnuplot’s set key com-
mand. The most common usage takes the form of two words: left, right or center along with
top, bottom or center (in either order). These words can be preceded by outside to place the key
outside of the plot area. For example, keypos="bottom center" or keypos="outside top left".
The default position is bottom right.

linecolor: string, naming the color in which to draw the borders of the regions. By default this is white
if a payload is plotted, black if only outlines are shown.

linewidth: scalar, giving the width of the lines representing the borders of the regions. Setting this to
0 suppresses those lines (unless no payload is supplied). Default: 1.0.

literal: string containing gnuplot commands, for insertion before the actual plot command.

logscale: boolean, use log scale for the payload. Default: false.

missvals: string, see section 5.2.

plotfile: filename, allowing the user to direct output, either to a specified gnuplot command file or to
a graphic file. If a command file is wanted the extension should be plt. If a graphic file is wanted
you should give one of the following extensions: png, pdf, eps, emf, svg or html. If plotfile is
given, but not as a full path, the file is written to the user’s working directory.

projection: string, see Appendix B.

palette: string, the exact specification of which depends on whether the payload data are quantitative
or qualitative. For the qualitative case see Section 7. In the quantitative case the string should give
either a gnuplot set palette command or a predefined option, of which there are currently three:
blues, oranges and green-to-red. For example, the syntax

options.palette = "set palette defined (0 ’#D4E4F2’, 1 ’steelblue’)"

will give you a pleasing blue gradient—which also happens to be what you get by giving

options.palette = "blues"

If no such string is given you get the default built-in gnuplot palette.

show: boolean, should the plot should be shown on-screen right away? Default: true. (Otherwise a file
of some sort is written but not displayed—see plotfile above.)

tics: boolean, for turning on the printing of X (longitude) and Y (latitude) tics. Default: tics are
suppressed, unless geoplot is invoked without any payload.

title: string specifying a title for the plot. Default: no title.

10



xrange: 2-element vector, containing the longitude range used on the plot (see Appendix B). Default:
automatically determined.

yrange: 2-element vector, containing the latitude range used on the plot (see Appendix B). Default:
automatically determined.

It may be helpful to run through various geoplot scenarios with an eye to usage of the options.

1. You just want to see the map on-screen. Then don’t give plotfile (or set it to null) and accept
the default of show = 1.

2. You want to see the map on-screen but also save the plot command file that generated it (maybe
you want to edit the commands or pass them to gnuplot independently of gretl). Then specify
plotfile with a plt extension.

3. As in case 2 but you don’t care to see the map on-screen: add show = 0.

4. You want to generate a graphic file (maybe for inclusion in a document or web page). Then give
plotfile with one of the recognized graphic format extensions. In this case show is automatically
turned off.

Note that if you set show to 0 and do not specify plotfile that is tantamount to saying “Don’t do
anything!”, which is regarded as an error.

6.1 Inlined data or not?

As mentioned above, geoplot can pass the map coordinates to gnuplot either by writing them directly
into the plot command file (inlined = 1), or by writing them to a separate data file whose name is
recorded in the command file (inlined = 0).

From the user’s point of view, this distinction makes a difference only if you’re saving the plot command
file (as in scenario 1 or 2 above). In that context, the advantage of having the data inlined is that,
being all in one file, the information required to generate a map cannot easily become “unstuck”. The
disadvantage is that the command file may be very large, and perhaps not so easy to edit; besides the
actual gnuplot commands it may contain many thousands of lines of coordinates data (which in general
should not be touched, on pain of breaking the map). At present inlined is set to 0 by default but that
may change; we recommend making an explicit choice via the options bundle.

Note that if you specify plotfile as a gnuplot command file, but not inlined, you’ll get two output
files: the specified plt file plus a data file named by adding the extension dat. For example you might
get mygeo.plt and mygeo.plt.dat, while with inlined = 1 you’d just get a big mygeo.plt.

7 Quantitative versus qualitative payloads

In the foregoing we have assumed that if a payload is supplied the data are quantitative—either continu-
ous, or if discrete then at least ordinal. However, one may wish to plot qualitative (categorical) data, and
that calls for a different sort of color palette. In the quantitative case one probably wants a graduated
scheme—either shades of a single hue or perhaps a “heat map” comprising more than one hue. If the data
are categorical, clearly distinct colors are likely wanted.

How can geoplot tell the difference? Well, in a gretl dataset a categorical variable is likely represented by
a string-valued series, but may take the form of a numeric series where the numbers are a pure encoding
with no quantitative significance. String-valued series (and also 0/1 dummy series) will be recognized
by geoplot as qualitative automatically, but otherwise a numeric series called cvals which serves as an
encoding should be marked as such, using the command

setinfo cvals --coded

11



If a payload series is recognized as qualitative with k values, the default geoplot palette is not the
gnuplot default (which is of the heat-map type) but rather an automatic selection of k distinct colors.
And the values accepted under the palette key in the options bundle are simpler than in the quantitative
case. We expect either the name of an array of k strings, each of which contains a color specification
comprehensible by gnuplot, or the keyword auto (which just confirms automatic color selection). Here’s
an example, suitable for a binary payload variable (k = 2):

strings mycolors = defarray("#D22532", "#244999")

opts.palette = "mycolors"

In addition a second, comma-separated element can be given when the payload data are qualitative,
namely an array of strings to appear in the “key” or legend for the plot. If the payload series is string-
valued its strings will be used by default for this purpose, but you may wish to supply abbreviated or
translated strings. This facility can also be used to give suitable strings for a 0/1 binary series (which
cannot have string values since that requires a minimum numeric value of 1 or greater). Extending the
example above, we might do:

strings mycolors = defarray("#D22532", "#244999")

strings zlabels = defarray("Republican", "Democratic")

opts.palette = "mycolors,zlabels"

The position of the legend can be adjusted by using the keypos option (see Section 6).

Examples of maps showing qualitative data are provided by the scripts swiss-langs.inp and us-2020.inp.
You can find these scripts and others via the item Resource from addon under the File menu in the gretl
GUI. Figure 6 shows two variants of a map representing the main language of each Swiss canton (via a
string-valued series named mainlang). The customizations in the second map are achieved via

strings langcolors = defarray("#E87E7E", "#9DA8E0", "#85E1C3", "#E1C385")

strings zlabels = defarray("Deutsch", "Français", "Rumantsch", "Italiano")

opts.palette = "langcolors,zlabels"

Give a palette string of (e.g.) "auto,zlabels" if you want to adjust the strings but use the default
colors.

8 Maps via the GUI

To this point we have referred exclusively to executing commands and calling functions. You can, of
course, execute commands and call functions in the GUI program via script or via the gretl console, but
what about point-and-click? Well, there is a certain amount you can do in that way.

First, you can open a shapefile or GeoJSON file using the menu item /File/Open data/User file. In
the bottom right-hand corner of the “open file” dialog, use the pull-down list to select “Shapefiles” or
“GeoJSON files”. You can also drag-and-drop such files onto the main gretl window to the same effect.

Once map metadata are loaded in this way, the option Display map becomes available via the context
(“right-click”) menu in the main window, and also under /View/Graph specified vars; it will trigger a
window like the one in Figure 7.

If the current dataset contains one or more series that seem to gretl to be plausible “payload” variables,4

invoking Display map will produce a dialog box that allows you to select one, in which case you’ll get
a choice of color palette to represent it. Otherwise you just get to view the map outlines. The options
border, linewidth, logscale and height (see Section 6) can also be selected via the GUI.

Further, the plot window shown by Display map offers a right-click menu that allows saving the map (as
PDF, EPS, PNG or EMF), copying it to the clipboard, or saving it “as an icon”.

Note that the options offered by the GUI are, at the moment, quite limited compared to the ones available
via scripting. We may at some point expand the Display map dialog to offer more of the choices available
via the options argument to the geoplot function.

4Admittedly, the heuristic employed for this purpose is not terribly clever.

12



German
French

Romansh
Italian

Swiss languages 1

Deutsch
Français

Rumantsch
Italiano

Swiss languages 2

Figure 6: Main language per Swiss canton: the upper plot uses the default palette and strings; the lower one uses

a customized palette and translated strings.

Figure 7: Graphical interface to the geoplot command.

13



9 “Expert” refinements

To recap, we have explained how map metadata can be brought in via the open command (or via the
GUI); how to add“payload”data; and how to generate a map using the geoplot function. So far so good,
but that leaves open some questions that might occur to ambitious users. Can I open a map file, add a
payload series, and save a modified version of the map file including the payload? And in relation to a
map of the USA (for example), is there a way to include Alaska and Hawaii, but “tuck them underneath”
the continental US, like I see in graphics on the web?

Short answer: Yes. You can import a GeoJSON file (or shapefile) as a gretl “bundle” by means of the
bread function; make changes to the bundle; then save it as GeoJSON using bwrite.

To get control over this it’s necessary to understand the structure of the bundle that bread produces when
fed map input. This mimics the structure of a GeoJSON file (even if the input comes from a shapefile),
as shown in Listing 6; the labeling of elements is as in GeoJSON, with gretl types in parentheses.

FeatureCollection (bundle)

features (array of n bundles)

features[i] (bundle)

features[i].properties (bundle)

features[i].geometry (bundle)

features[i].geometry.type (string)

features[i].geometry.coordinates (array)

Listing 6: Structure of map data, gretl types in parentheses

9.1 Injecting payload data

First let’s look at the case of injecting a payload series into a map file. Listing 7 revisits the EU founders
map discussed in section 4. As before, we start by opening the metadata and “joining” the GDP per
capita data. But now we open the GeoJSON as a bundle, and for each feature (country) we augment
its properties bundle with the corresponding value of the gdppc series (under the key “gdppc”). Finally,
we write the modified data to file.

9.2 Rearranging regions

Now how about rearranging regions of a given country (or more generally, features within a given
FeatureCollection)? Here we use the function geoplot_translate_feature. Unlike the geoplot

function this is not “built in” so before calling it one must do

include geoplot.gfn

The signature of the feature-translation function is

void geoplot_translate_feature(bundle *b, int f,

matrix shift,

matrix center[null],

matrix scale[null])

You pass in a map bundle obtained via bread (in pointer form); the sequential index, f, of the feature to
translate; and a 2-vector shift giving displacement in the X and Y directions. If in addition you want
to rescale the feature you pass two more 2-vectors: center holds the coordinates of the feature’s centroid
and scale the scale factors to apply in the two directions.

An example script is shown in Listing 8 and the result of plotting the modified GeoJSON file in Figure 8.
We obtain the second argument to pass to the translator by inspection of the map dataset: Alaska is
feature 48 and Hawaii feature 5. In this case we decide to move Alaska 34◦ East and 35◦ South and

14



open founders.geojson --quiet --frompkg=geoplot

join founders.csv gdp pop --ikey=FID --okey=code

series gdppc = 1000*gdp/pop

# open full GeoJSON as bundle

bundle b = bread($mapfile)

# add GDP per capita to properties

loop i=1..nelem(b.features)

b.features[i].properties.gdppc = gdppc[i]

endloop

# save modified geojson file

bwrite(b, "founders_mod.json")

Listing 7: Adding payload data to a map file: founders_mod.inp

include geoplot.gfn

open us-states.geojson --quiet --frompkg=geoplot

bundle b = bread($mapfile)

# Shrink Alaska and place underneath the "lower 48"

matrix shift = {34, -35}

matrix center = {-150.885, 62.5503}

matrix scale = {0.3, 0.35}

geoplot_translate_feature(&b, 48, shift, center, scale)

# Shift Hawaii alongside Alaska

shift = {51, 5}

geoplot_translate_feature(&b, 5, shift)

# save modified geojson file

bwrite(b, "us_modified.json")

Listing 8: Moving Alaska and Hawaii

Figure 8: Alaska and Hawaii moved

15



shrink it substantially. Getting the effect one wants is likely to take some trial and error, but two geoplot
features can be helpful.

First, if you plot just the map outlines (no payload) then you should see the X and Y values on the
axes, giving you at least a rough idea of the shifts you might want. Second, geoplot contains the function
geoplot_describe_json which gives you a good deal of relevant information. The signature of this
function is

bundle geoplot_describe_json (const bundle jb, int verbose[1])

You pass a map bundle and a verbosity level, as in

include geoplot.gfn

bundle us = bread("us-states.geojson")

geoplot_describe_json(us, 3)

On searching the verbose = 3 output for Alaska one finds (here’s a small snippet):

48: geometry type = MultiPolygon, no id

...

name: Alaska

...

Extents: X = {-171.791,-129.98}; Y = {54.4042,70.6964}

The Extents data enable you to figure out plausible values for the center of a feature.

10 Coda

In the foregoing we have mostly kept things simple with toy examples. In concluding, we’ll show off
with a “real” example: Figure 9 shows the distribution of COVID cases across Italian provinces as of
2020-05-15. The appearance of this plot was tuned using the following option settings:

string cmds = sprintf("set colorbox user origin 0.9,0.45 size 0.03,0.4\n")

cmds ~= sprintf("set xrange [6.4:20.5]")

bundle opts = _(plotfile = "covid.pdf")

opts.logscale = 1

opts.border = 0

opts.linewidth = 0.4

opts.palette = "green-to-red"

opts.literal = cmds

opts.height = 900

As you will have seen in the previous figures, the default gnuplot “colorbox” is quite large, occupying
the full height of the plot. This doesn’t look so great for a tall, skinny country like Italy, so we used
the literal option to pass in commands to make the colorbox smaller and reposition it; to prevent the
colorbox from going off the right edge of the plot we also made the xrange a little wider than the default.
We were able to determine what the revised xrange should look like by examining a plot with no payload,
showing the latitude values on the axes.

11 Change log

Version 1.1 (2023-05-01): Add keypos option for adjusting the key position when plotting qualitative
data.

Version 1.0 (2023-01-17): Update the documentation to explain how to handle qualitative payload data;
fix bug whereby output to an image file could fail.

Version 0.2 (2021-02-12): Fix some incorrect type specifiers in geoplot_utils.inp, revealed by improved
type-checking following the gretl 2021a release.

Version 0.1 (2020-05-27): Initial release

16



 10

 100

Figure 9: COVID-19 cases per 10 000 by province as of 2020-05-15, log scale

17



Appendix A Representation of polygons in gnuplot

The following gnuplot code

unset key

plot ’-’ using 1:2:3 with filledcurves fillcolor "blue"

0 0 0

0.5 0 0.866

1 0 0

e

produces an equilateral triangle:
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0  0.2  0.4  0.6  0.8  1

The internal coloring of polygons can be set using “fillcolor palette”. For example,

unset key

$coords << EOD

0 0 2.5

0 1 2.5

1 1 2.5

1 0 2.5

2 1 3.5

2 2 3.5

3 2 3.5

3 1 3.5

4 0 3

4 1 3

5 1 3

5 0 3

EOD

plot for [i=0:*] $coords index i with filledcurves fillcolor palette

(where the third column of the data indexes into the palette) produces

A nice way to customize the palette is via “set palette defined” (see the gnuplot manual; also see
section 6 above).

18



Appendix B Projections

Geoplot assumes (mostly, but see below) that incoming map coordinates are given as degrees of latitude
(Y) and longitude (X). This is mandated by RFC 7946, which has governed GeoJSON since 2016; it also
appears to be the most common case for ESRI shapefiles.

Everyone knows that the Earth is not actually a sphere, but let’s pretend it is for simplicity. Then a
degree of latitude is always the same length on the ground: 1/360 of the planet’s circumference. But the
length of a degree of longitude varies, from 1/360 of Earth’s circumference at the equator to zero at the
poles. So imagine that we pass the X–Y pairs to our plotting engine on the assumption that “a degree”
is always the same size: the result will be more or less OK close to the equator but at higher or lower
latitudes features will be seriously stretched horizontally (or squashed vertically) relative to what we’re
used to seeing. To avoid this effect some sort of projection is required.

By default geoplot uses what we might call a “quasi-Mercator” projection. In most cases this should
produce maps that look quite acceptable and it has the advantage of simplicity. All we do is take the
height of the plot as specified by the user (or a default of 600 pixels) and figure out what the width should
be to make a degree of longitude the same size as a degree of latitude at the mid-point latitude. However,
we offer four alternatives, as follows:

EPSG id description option string

3857 standard Mercator "Mercator"

4326 “null” projection "EPSG4326"

2163 U.S. National Atlas Equal Area "EPSG2163"

3035 Europe Equal Area "EPSG3035"

Figure 10 compares the available projections for the contiguous United States. In this case the default
geoplot projection and standard Mercator are practically indistinguishable. EPSG:4326, which treats
degrees as everywhere the same size, exhibits the horizontal stretching mentioned above. EPSG:2163
gives the impression of looking at the USA on a section of the globe.

Default Mercator

EPSG:4326 EPSG:2163

Figure 10: Comparison of projections

To select one of the alternatives, you add the appropriate string to the options bundle passed to the
geoplot function under the key projection. Please note that EPSG:2163 is specially tuned for the USA,
and will produce weird-looking or non-existent results for other parts of the world. EPSG:3035 is similarly
tuned for Europe. They are both so-called Lambert Azimuthal Equal Area projections.

19



Non-standard coordinates

In certain map files—maybe GeoJSON predating RFC 7946, and perhaps some shapefiles—the X–Y
coordinates are not in the expected form of degrees of latitude and longitude. In that case they probably
already encode some sort of projection, and so should not be “re-projected”. For GeoJSON files, geoplot
makes an attempt to determine whether a non-standard coordinate system is used, as was allowed under
the obsolete GeoJSON 2008 specification. In that case we automatically cancel projection; we also do
this if the X or Y values are out of bounds for representing degrees (that is, |X| > 360 or |Y| > 180).

Failing such automatic detection, one can try specifying EPSG:4326 to get the X and Y units to be treated
as equal in size, in effect canceling projection, as in

bundle options

options.projection = "EPSG4326"

Limiting the area shown

Section 5.2 explains how to exclude certain features from a map using the smpl command. In some cases,
however, one may wish to limit what is shown in a different way, by specifying ranges for latitude and
longitude. This can be done by supplying 2-vectors in the geoplot options bundle under the keys xrange
(longitude) and yrange (latitude). For example, to plot just the area from 40◦ to 60◦ North and 10◦ to
30◦ East you can do

options.yrange = {40,60}

options.xrange = {10,30}

Specifying such ranges in degrees works fine if you are using the default geoplot projection, Mercator
or EPSG:4326. But it doesn’t work for azimuthal projections, where neither meridians nor parallels are
straight lines. Rather, you should first plot the entire map using the projection you want, with axis tics
turned on to show the linearized coordinates. Then specify the ranges in terms of these values. For
example, here’s how one might restrict a US map to the contiguous states via ranges:

open us-states.geojson --frompkg=geoplot

bundle opts

opts.projection = "EPSG2163" # azimuthal

opts.tics = 1

# take a look-see

geoplot(null, opts)

# suitable ranges, by inspection

opts.xrange = {-330,410}

opts.yrange = {-350,130}

geoplot(null, opts)

Further reading

For anyone wishing to follow up on this sort of thing, there are many websites presenting information on
coordinate systems and projections. Two of the most useful ones, in our experience, are:

Reference materials: https://spatialreference.org/

Explanation: https://source.opennews.org/articles/choosing-right-map-projection/

20

https://spatialreference.org/
https://source.opennews.org/articles/choosing-right-map-projection/


Appendix C Specialized functions

The functions shown below are implemented in hansl and included in the geoplot addon; to use them you
must first do

include geoplot.gfn

bundle geoplot_describe_json (const bundle jb, int verbose[1])

Provides a systematic description of the GeoJSON bundle jb, the amount of detail depending on the
verbose setting, which has a maximum of 3. By assigning the return value one can obtain a bundle
containing the information but for some purposes the printed output may suffice. See section 9.2.

void geoplot_set_properties (bundle *b, list L)

Rewrites the properties within the bundle representation of a map, b, to include all and only the series
referenced in the list L. This provides a means of adding “payload” data (see section 2.2) and also pruning
unwanted metadata. In the example below, us-states.geojson originally contains 40 items of metadata
per state, most of them unlikely to be of interest.

# example

open us-states.geojson --quiet --frompkg=geoplot

join statepop.gdt population --ikey=postal --okey=Code

# select only the properties we actually want

list L = name postal population

bundle b = bread($mapfile)

geoplot_set_properties(&b, L)

bwrite(b, "us_pruned.json")

void geoplot_translate_feature (bundle *b, int f,

matrix shift,

matrix center[null],

matrix scale[null])

Shifts the feature with sequential index f, optionally rescaling it. See section 9.2 for an example and
explanation.

matrix geoplot_seek_feature(const bundle b,

string name,

bool do_plot[1])

Searches the map bundle b for features matching name (on a case-insensitive basis). If one or more
matches are found their 1-based indices are returned in a row vector. If a single match is found metadata
for the feature are printed and if do_plot is not set to zero a plot of the feature is shown.

include geoplot.gfn

open us-states.geojson --frompkg=geoplot --quiet

21



map = bread($mapfile)

# no matches

geoplot_seek_feature(map, "nowhere")

# two matches

geoplot_seek_feature(map, "CAROLINA")

# one match, plot shown

geoplot_seek_feature(map, "Florida")

void geoplot_simplify(bundle *b, scalar preserve[0.1:1:0.75])

Simplifies the polygons in the map bundle b using the Visvalingam–Whyatt algorithm.5 This may be
useful if for a certain geography of interest the only map file readily available is at a higher resolution
than you need. Smaller values of the preserve parameter preserve less detail or in other words simplify
the map more radically; the default value of 0.75 may be considered conservative if you start with a very
detailed map.

include geoplot.gfn

open highres.geojson --quiet

bundle map = bread($mapfile)

geoplot_simplify(&map, 0.5)

bwrite(map, "simplified.geojson")

open simplified.geojson --quiet

# see if the level of detail is OK

geoplot()

5See https://hull-repository.worktribe.com/output/459275. And for a nice illustration see https://bost.ocks.org/
mike/simplify/ (accessed 2023-01-16).

22

https://hull-repository.worktribe.com/output/459275
https://bost.ocks.org/mike/simplify/
https://bost.ocks.org/mike/simplify/

	Quick start
	Preliminaries
	The geometry
	The payload data
	The software backend

	The workflow
	An example
	Ensuring correct alignment
	Aligning the payload
	Sub-sampling

	Options for the geoplot function
	Inlined data or not?

	Quantitative versus qualitative payloads
	Maps via the GUI
	``Expert'' refinements
	Injecting payload data
	Rearranging regions

	Coda
	Change log
	Representation of polygons in gnuplot
	Projections
	Specialized functions

