next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.00006217 seconds elapsed
 -- 0.000642416 seconds elapsed
 -- 0.000148791 seconds elapsed
 -- 0.000111261 seconds elapsed
 -- 0.000621516 seconds elapsed
 -- 0.000145262 seconds elapsed
 -- 0.00004768 seconds elapsed
 -- 0.000043769 seconds elapsed
 -- 0.000116721 seconds elapsed
 -- 0.00005255 seconds elapsed
 -- 0.000521276 seconds elapsed
 -- 0.000132012 seconds elapsed
 -- 0.00005443 seconds elapsed
 -- 0.000491925 seconds elapsed
 -- 0.000131521 seconds elapsed
 -- 0.000059761 seconds elapsed
 -- 0.000498386 seconds elapsed
 -- 0.000134911 seconds elapsed
 -- 0.000051822 seconds elapsed
 -- 0.000545276 seconds elapsed
 -- 0.000156512 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000079221 seconds elapsed
 -- 0.000628368 seconds elapsed
 -- 0.000140582 seconds elapsed
 -- 0.000062761 seconds elapsed
 -- 0.000560737 seconds elapsed
 -- 0.000135622 seconds elapsed
 -- 0.000083862 seconds elapsed
 -- 0.000603798 seconds elapsed
 -- 0.000153211 seconds elapsed
 -- 0.0000766 seconds elapsed
 -- 0.000517846 seconds elapsed
 -- 0.000136373 seconds elapsed
 -- 0.0000654 seconds elapsed
 -- 0.000499715 seconds elapsed
 -- 0.000131673 seconds elapsed
 -- 0.000073871 seconds elapsed
 -- 0.000557486 seconds elapsed
 -- 0.000147721 seconds elapsed
 -- 0.000072981 seconds elapsed
 -- 0.000669908 seconds elapsed
 -- 0.000145121 seconds elapsed
 -- 0.000062791 seconds elapsed
 -- 0.000588656 seconds elapsed
 -- 0.000143813 seconds elapsed
 -- 0.000076111 seconds elapsed
 -- 0.000583106 seconds elapsed
 -- 0.000156672 seconds elapsed
 -- 0.000105221 seconds elapsed
 -- 0.000535686 seconds elapsed
 -- 0.000181043 seconds elapsed
 -- 0.000078051 seconds elapsed
 -- 0.000574006 seconds elapsed
 -- 0.000153202 seconds elapsed
 -- 0.000076411 seconds elapsed
 -- 0.000561187 seconds elapsed
 -- 0.000140821 seconds elapsed
 -- 0.00008031 seconds elapsed
 -- 0.000870939 seconds elapsed
 -- 0.000335653 seconds elapsed
 -- 0.000063961 seconds elapsed
 -- 0.00092589 seconds elapsed
 -- 0.000252763 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.