Rheolef
7.1
an efficient C++ finite element environment
cosinus_vector.h
The cosinus vector function
struct
u_exact
{
point
operator()
(
const
point
& x)
const
{
return
point
(cos(
w
*(x[0]+2*x[1])),sin(
w
*(x[0]-2*x[1]))); }
u_exact
(
size_t
d
) :
w
(1) {}
Float
w
;
};
struct
div_u_exact
{
Float
operator()
(
const
point
& x)
const
{
return
-
w
*(sin(
w
*(x[0]+2*x[1])) + 2*cos(
w
*(-x[0]+2*x[1]))); }
div_u_exact
(
size_t
d
) :
w
(1) {}
Float
w
;
};
div_u_exact::div_u_exact
div_u_exact(size_t d)
Definition:
cosinus_vector.h:34
u_exact::d
size_t d
Definition:
interpolate_RTk_polynom.icc:145
div_u_exact
Definition:
cosinus_vector.h:31
u_exact::w
Float w
Definition:
interpolate_RTk_polynom.icc:145
u_exact::operator()
point operator()(const point &x) const
Definition:
interpolate_RTk_polynom.icc:126
div_u_exact::operator()
Float operator()(const point &x) const
Definition:
cosinus_vector.h:32
div_u_exact::w
Float w
Definition:
cosinus_vector.h:35
u_exact::u_exact
u_exact(size_t d1, Float w1=acos(Float(-1)))
Definition:
interpolate_RTk_polynom.icc:144
Float
see the Float page for the full documentation
u_exact
Definition:
interpolate_RTk_polynom.icc:125
point
see the point page for the full documentation
mkgeo_ball.d
d
Definition:
mkgeo_ball.sh:154