Rheolef  7.1
an efficient C++ finite element environment
p_laplacian2.icc

The p-Laplacian problem by the Newton method – class body

field rh (Xh, 0);
pm.solve (mrh, rh);
field mgh = a1*rh;
mgh.set_b() = 0;
return mgh;
}
Float p_laplacian::space_norm (const field& uh) const {
return sqrt (m(uh,uh));
}
field rh (Xh, 0);
pm.solve (mrh, rh);
return sqrt (dual(mrh, rh));
}
rheolef::details::dual
rheolef::details::is_field_expr_quadrature_arg dual
field
see the field page for the full documentation
p_laplacian::a1
form a1
Definition: p_laplacian.h:42
p_laplacian::pm
problem pm
Definition: p_laplacian.h:41
p_laplacian::m
form m
Definition: p_laplacian.h:40
p_laplacian::derivative_trans_mult
field derivative_trans_mult(const field &mrh) const
Definition: p_laplacian2.icc:25
p_laplacian::dual_space_norm
Float dual_space_norm(const field &mrh) const
Definition: p_laplacian2.icc:35
Float
see the Float page for the full documentation
p_laplacian::Xh
space Xh
Definition: p_laplacian.h:38
p_laplacian::space_norm
Float space_norm(const field &uh) const
Definition: p_laplacian2.icc:32