Rheolef
7.1
an efficient C++ finite element environment
burgers_flux_godunov.icc
The Burgers equation – the Godonov flux
Float
phi
(
const
point
&
nu
,
Float
a
,
Float
b
) {
if
((
nu
[0] >= 0 &&
a
<=
b
) || (
nu
[0] <= 0 &&
a
>=
b
))
return
nu
[0]*min(sqr(
a
),sqr(
b
))/2;
else
return
nu
[0]*max(sqr(
a
),sqr(
b
))/2;
}
nu
Definition:
nu.h:26
phi
Float phi(const point &nu, Float a, Float b)
Definition:
burgers_flux_godunov.icc:25
a
Definition:
diffusion_isotropic.h:25
Float
see the Float page for the full documentation
point
see the point page for the full documentation
mkgeo_ball.b
b
Definition:
mkgeo_ball.sh:152