Rheolef
7.1
an efficient C++ finite element environment
oldroyd_contraction.h
The Oldroyd problem on the contraction benchmark – boundary conditions
#include "
contraction.h
"
struct
oldroyd_contraction
:
contraction
{
struct
tau_upstream: base {
tau_upstream
(
geo
omega,
Float
We1,
Float
alpha1)
:
base
(omega),
We
(We1),
alpha
(alpha1) {}
tensor
operator()
(
const
point
& x)
const
{
tensor
tau;
Float
dot_gamma = - 2*
base::umax
*x[1]/sqr(
base::c
);
tau(0,0) = 2*
alpha
*
We
*sqr(dot_gamma);
tau(0,1) = tau(1,0) =
alpha
*dot_gamma;
tau(1,1) = 0;
return
tau;
}
Float
We
,
alpha
;
};
};
contraction.h
The contraction geometry: boundary conditions.
tensor
see the tensor page for the full documentation
contraction::base::base
base(geo omega)
Definition:
contraction.h:27
oldroyd_contraction
Definition:
oldroyd_contraction.h:26
oldroyd_contraction::tau_upstream::tau_upstream
tau_upstream(geo omega, Float We1, Float alpha1)
Definition:
oldroyd_contraction.h:28
contraction
Definition:
contraction.h:25
contraction::base::c
Float c
Definition:
contraction.h:33
oldroyd_contraction::tau_upstream::operator()
tensor operator()(const point &x) const
Definition:
oldroyd_contraction.h:30
oldroyd_contraction::tau_upstream::We
Float We
Definition:
oldroyd_contraction.h:38
oldroyd_contraction::tau_upstream::alpha
Float alpha
Definition:
oldroyd_contraction.h:38
Float
see the Float page for the full documentation
point
see the point page for the full documentation
geo
see the geo page for the full documentation
contraction::base::umax
Float umax
Definition:
contraction.h:33