an efficient C++ finite element environment
|
|
The Stokes problem for the Taylor benchmark by the discontinuous Galerkin method – error analysis
int main(
int argc,
char**argv) {
Float err_linf_expected = (argc > 1) ? atof(argv[1]) : 1e+38;
space Xh = uh.get_space();
geo omega = Xh.get_geo();
space Qh (omega, Xh.get_approx());
size_t k = Xh.degree();
size_t d = omega.dimension();
ph = ph - moy_ph/meas_omega;
string high_approx =
"P"+
itos(k+1)+
"d";
space Xh1 (omega, high_approx,
"vector"),
Qh1 (omega, high_approx);
Float err_u_linf = euh.max_abs();
Float err_p_linf = eph.max_abs();
derr <<
"err_u_l2 = " << err_u_l2 << endl
<< "err_u_linf = " << err_u_linf << endl
<< "err_u_h1 = " << err_u_h1 << endl
<< "err_p_l2 = " << err_p_l2 << endl
<< "err_p_linf = " << err_p_linf << endl;
}
return (max(err_u_linf,err_p_linf) <= err_linf_expected) ? 0 : 1;
}
see the catchmark page for the full documentation
see the field page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
verbose clean transpose logscale grid shrink ball stereo iso volume skipvtk deformation fastfieldload lattice reader_on_stdin color format format format format format format format format format format format format format format format format format format dump
details::field_expr_v2_nonlinear_terminal_function< details::h_local_pseudo_function< Float > > h_local()
h_local: see the expression page for the full documentation
see the space page for the full documentation
rheolef - reference manual
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
see the integrate_option page for the full documentation
int main(int argc, char **argv)
field_basic< T, M > interpolate(const space_basic< T, M > &V2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
idiststream din
see the diststream page for the full documentation
see the environment page for the full documentation
This file is part of Rheolef.
odiststream derr(cerr)
see the diststream page for the full documentation
see the Float page for the full documentation
void set_family(family_type type)
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad_h(const Expr &expr)
grad_h(uh): see the expression page for the full documentation
odiststream dout(cout)
see the diststream page for the full documentation
std::string itos(std::string::size_type i)
itos: see the rheostream page for the full documentation
see the geo page for the full documentation
The Taylor benchmark – the exact solution of the Stokes problem.