Rheolef  7.1
an efficient C++ finite element environment
dirichlet_dg.cc
Go to the documentation of this file.
1 #include "rheolef.h"
26 using namespace rheolef;
27 using namespace std;
28 #include "cosinusprod_laplace.h"
29 int main(int argc, char**argv) {
30  environment rheolef (argc, argv);
31  geo omega (argv[1]);
32  space Xh (omega, argv[2]);
33  size_t d = omega.dimension();
34  size_t k = Xh.degree();
35  Float beta = (k+1)*(k+d)/Float(d);
36  trial u (Xh); test v (Xh);
37  form a = integrate (dot(grad_h(u),grad_h(v)))
38  + integrate ("sides", beta*penalty()*jump(u)*jump(v)
39  - jump(u)*average(dot(grad_h(v),normal()))
40  - jump(v)*average(dot(grad_h(u),normal())));
41  field lh = integrate (f(d)*v)
42  + integrate ("boundary", beta*penalty()*g(d)*v
43  - g(d)*dot(grad_h(v),normal()));
44  a.uu().set_definite_positive(true);
45  field uh(Xh);
46  problem p (a);
47  p.solve (lh, uh);
48  dout << uh;
49 }
g
u_exact g
Definition: burgers_diffusion_exact.h:33
form
see the form page for the full documentation
rheolef::dot
rheolef::std enable_if ::type dot const Expr1 expr1, const Expr2 expr2 dot(const Expr1 &expr1, const Expr2 &expr2)
dot(x,y): see the expression page for the full documentation
Definition: vec_expr_v2.h:415
field
see the field page for the full documentation
rheolef::normal
details::field_expr_v2_nonlinear_terminal_function< details::normal_pseudo_function< Float > > normal()
normal: see the expression page for the full documentation
Definition: field_expr_terminal.h:439
mkgeo_ball.f
int f
Definition: mkgeo_ball.sh:221
rheolef::integrate
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:202
mkgeo_ball.d
int d
Definition: mkgeo_ball.sh:154
space
see the space page for the full documentation
rheolef.h
rheolef - reference manual
p
Definition: sphere.icc:25
a
Definition: diffusion_isotropic.h:25
rheolef::environment
see the environment page for the full documentation
Definition: environment.h:115
lh
field lh(Float epsilon, Float t, const test &v)
Definition: burgers_diffusion_operators.icc:25
rheolef
This file is part of Rheolef.
Definition: compiler_eigen.h:37
test
see the test page for the full documentation
problem
see the problem page for the full documentation
u
Definition: leveque.h:25
Float
see the Float page for the full documentation
u
Float u(const point &x)
Definition: transmission_error.cc:26
rheolef::penalty
details::field_expr_v2_nonlinear_terminal_function< details::penalty_pseudo_function< Float > > penalty()
penalty(): see the expression page for the full documentation
Definition: field_expr_terminal.h:626
cosinusprod_laplace.h
The cosinus product function – right-hand-side and boundary condition for the Laplace problem.
rheolef::grad_h
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad_h(const Expr &expr)
grad_h(uh): see the expression page for the full documentation
Definition: field_expr_terminal.h:949
trial
see the test page for the full documentation
rheolef::Float
double Float
see the Float page for the full documentation
Definition: Float.h:143
rheolef::dout
odiststream dout(cout)
see the diststream page for the full documentation
Definition: diststream.h:430
rheolef::std
Definition: vec_expr_v2.h:402
geo
see the geo page for the full documentation
rk::beta
Float beta[][pmax+1]
Definition: runge_kutta_semiimplicit.icc:60
main
int main(int argc, char **argv)
Definition: dirichlet_dg.cc:29