an efficient C++ finite element environment
|
|
The sinus product function – error analysis for the hybrid discontinuous Galerkin method
int main(
int argc,
char**argv) {
Float err_linf_expected = (argc > 1) ? atof(argv[1]) : 1e+38;
space Tth = sigmat_h.get_space();
geo omega = Tth.get_geo();
size_t k = Tth.degree() - 1;
size_t d = omega.dimension();
space Th1 (omega,
"P"+
itos(k+1)+
"d",
"vector");
Float err_sigmat_linf = esth.max_abs();
derr <<
"err_sigmat_l2 = " << err_sigmat_l2 << endl
<< "err_sigmat_linf = " << err_sigmat_linf << endl;
Float err_div_sigmat_linf = edsth.max_abs();
derr <<
"err_div_sigmat_l2 = " << err_div_sigmat_l2 << endl
<< "err_div_sigmat_linf = " << err_div_sigmat_linf << endl;
return (err_sigmat_linf <= err_linf_expected) ? 0 : 1;
}
int main(int argc, char **argv)
see the catchmark page for the full documentation
see the field page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
see the space page for the full documentation
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::divergence >>::type div_h(const Expr &expr)
div_h(uh): see the expression page for the full documentation
rheolef - reference manual
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
see the integrate_option page for the full documentation
field_basic< T, M > interpolate(const space_basic< T, M > &V2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
idiststream din
see the diststream page for the full documentation
see the environment page for the full documentation
This file is part of Rheolef.
odiststream derr(cerr)
see the diststream page for the full documentation
see the Float page for the full documentation
The cosinus product function – its gradient.
void set_family(family_type type)
The cosinus product function – right-hand-side and boundary condition for the Poisson problem.
std::string itos(std::string::size_type i)
itos: see the rheostream page for the full documentation
see the geo page for the full documentation