Rheolef  7.1
an efficient C++ finite element environment
cosinusprod_laplace.h

The cosinus product function – right-hand-side and boundary condition for the Laplace problem

struct f {
Float operator() (const point& x) const {
return d*pi*pi*cos(pi*x[0])*cos(pi*x[1])*cos(pi*x[2]); }
f(size_t d1) : d(d1), pi(acos(Float(-1))) {}
size_t d; const Float pi;
};
struct g {
Float operator() (const point& x) const {
return cos(pi*x[0])*cos(pi*x[1])*cos(pi*x[2]); }
g(size_t d1) : pi(acos(Float(-1))) {}
const Float pi;
};
g::g
g()
Definition: taylor.h:29
f::d
size_t d
Definition: cosinusprod_dirichlet.h:30
g::pi
const Float pi
Definition: cosinusprod_laplace.h:35
f::operator()
point operator()(const point &x) const
Definition: cavity_dg.h:30
Float
see the Float page for the full documentation
f::f
f()
Definition: taylor.h:34
point
see the point page for the full documentation
f::pi
const Float pi
Definition: cosinusprod_dirichlet.h:30
g::operator()
point operator()(const point &x) const
Definition: cavity_dg.h:26
g
Definition: cavity_dg.h:25
f
Definition: cavity_dg.h:29