Rheolef  7.1
an efficient C++ finite element environment
stokes_contraction.cc

The Stokes problem on the contraction benchmark – the Taylor-Hood element

#include "rheolef.h"
using namespace rheolef;
using namespace std;
#include "contraction.h"
int main(int argc, char**argv) {
environment rheolef (argc, argv);
geo omega (argv[1]);
space Xh = contraction::velocity_space (omega, "P2");
space Qh (omega, "P1");
trial u (Xh), p (Qh);
test v (Xh), q (Qh);
form a = integrate (2*ddot(D(u),D(v)));
form b = integrate (-div(u)*q);
field ph (Qh, 0);
problem_mixed stokes (a, b);
stokes.solve (field(Xh,0), field(Qh,0), uh, ph);
dout << catchmark("inv_lambda") << 0 << endl
<< catchmark("u") << uh
<< catchmark("p") << ph;
}
rheolef::div
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::divergence >>::type div(const Expr &expr)
div(uh): see the expression page for the full documentation
Definition: field_expr_terminal.h:1031
contraction.h
The contraction geometry: boundary conditions.
form
see the form page for the full documentation
rheolef::catchmark
see the catchmark page for the full documentation
Definition: catchmark.h:67
mkgeo_ball.b
int b
Definition: mkgeo_ball.sh:152
field
see the field page for the full documentation
rheolef::field
field_basic< Float > field
see the field page for the full documentation
Definition: field.h:419
rheolef::integrate
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:202
problem_mixed
see the problem_mixed page for the full documentation
space
see the space page for the full documentation
contraction::velocity_field
static field velocity_field(space Xh)
Definition: contraction.h:49
rheolef.h
rheolef - reference manual
p
Definition: sphere.icc:25
contraction::velocity_space
static space velocity_space(geo omega, string approx)
Definition: contraction.h:41
rheolef::ddot
T ddot(const tensor_basic< T > &a, const tensor_basic< T > &b)
ddot(x,y): see the expression page for the full documentation
Definition: tensor.cc:278
a
Definition: diffusion_isotropic.h:25
rheolef::environment
see the environment page for the full documentation
Definition: environment.h:115
rheolef
This file is part of Rheolef.
Definition: compiler_eigen.h:37
test
see the test page for the full documentation
main
int main(int argc, char **argv)
Definition: stokes_contraction.cc:29
u
Definition: leveque.h:25
rheolef::D
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type D(const Expr &expr)
D(uh): see the expression page for the full documentation.
Definition: field_expr_terminal.h:969
u
Float u(const point &x)
Definition: transmission_error.cc:26
trial
see the test page for the full documentation
rheolef::dout
odiststream dout(cout)
see the diststream page for the full documentation
Definition: diststream.h:430
rheolef::std
Definition: vec_expr_v2.h:402
geo
see the geo page for the full documentation