Rheolef  7.1
an efficient C++ finite element environment
yield_slip_error.cc

The yield slip problem on a circle – error computation

#include "rheolef.h"
using namespace rheolef;
using namespace std;
int main(int argc, char**argv) {
environment rheolef (argc,argv);
Float tol = (argc > 1) ? atof(argv[1]) : 1e-15;
Float S, n, Cf;
field uh, lambda_h;
din >> catchmark("S") >> S
>> catchmark("n") >> n
>> catchmark("Cf") >> Cf
>> catchmark("u") >> uh
>> catchmark("lambda") >> lambda_h;
const geo& omega = uh.get_geo();
geo boundary = omega["boundary"];
const space& Xh = uh.get_space();
field pi_h_u = interpolate (Xh, u(S,n,Cf));
field eh = pi_h_u - uh;
iopt.set_order(3*Xh.degree());
Float err_linf = eh.max_abs();
Float err_l2 = sqrt(integrate (omega, sqr(uh - u(S,n,Cf)), iopt));
Float err_h1 = sqrt(integrate (omega, norm2(grad(uh) - grad_u(S,n,Cf)), iopt));
Float err_b = sqrt(integrate (boundary, sqr(uh[boundary] - u(S,n,Cf)), iopt));
Float err_lb = sqrt(integrate (boundary, sqr(lambda_h - lambda(S,n,Cf)), iopt));
dout << "err_linf = " << err_linf << endl
<< "err_l2 = " << err_l2 << endl
<< "err_h1 = " << err_h1 << endl
<< "err_b = " << err_b << endl
<< "err_lb = " << err_lb << endl;
return (err_linf < tol) ? 0 : 1;
}
mkgeo_ball.n
int n
Definition: mkgeo_ball.sh:150
yield_slip_circle.h
The yield slip problem on a circle – exact solution.
rheolef::catchmark
see the catchmark page for the full documentation
Definition: catchmark.h:67
rheolef::integrate_option::set_order
void set_order(size_t r)
Definition: integrate_option.h:254
field
see the field page for the full documentation
rheolef::integrate
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:202
space
see the space page for the full documentation
rheolef::grad
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
Definition: field_expr_terminal.h:911
rheolef.h
rheolef - reference manual
rheolef::norm2
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
Definition: vec.h:379
rheolef::integrate_option
see the integrate_option page for the full documentation
Definition: integrate_option.h:125
mkgeo_ugrid.boundary
int boundary
Definition: mkgeo_ugrid.sh:181
rheolef::integrate_option::gauss
@ gauss
Definition: integrate_option.h:132
rheolef::interpolate
field_basic< T, M > interpolate(const space_basic< T, M > &V2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
Definition: interpolate.cc:233
eh
field_basic< T, M > eh
Definition: form_field_expr.h:58
rheolef::din
idiststream din
see the diststream page for the full documentation
Definition: diststream.h:427
rheolef::environment
see the environment page for the full documentation
Definition: environment.h:115
rheolef
This file is part of Rheolef.
Definition: compiler_eigen.h:37
Float
see the Float page for the full documentation
u
Float u(const point &x)
Definition: transmission_error.cc:26
grad_u
tensor grad_u
Definition: transport_tensor_exact.icc:26
rheolef::integrate_option::set_family
void set_family(family_type type)
Definition: integrate_option.h:260
rheolef::dout
odiststream dout(cout)
see the diststream page for the full documentation
Definition: diststream.h:430
rheolef::std
Definition: vec_expr_v2.h:402
geo
see the geo page for the full documentation
lambda
Definition: yield_slip_circle.h:34
main
int main(int argc, char **argv)
Definition: yield_slip_error.cc:29