Rheolef  7.1
an efficient C++ finite element environment
yield_slip1.icc

The yield slip problem – class body

const geo& omega, const geo& boundary1, string approx)
: S(S1), n(n1), Cf(Cf1), r(r1), boundary(boundary1), Xh(), Wh(), Yh(),
lh(), mkh(), m(), mb(), a(), b(), c1(), pmb(), pa(), pA()
{
Xh = space (omega, approx);
Wh = space (boundary, approx);
Yh = Xh*Wh;
trial u (Xh), lambda(Wh);
test v (Xh), mu(Wh);
m = integrate(u*v);
lh = integrate(v);
pmb = problem (mb);
pa = problem (a);
field vh(Xh);
pa.solve (lh, vh);
mkh = b*vh;
}
field yield_slip::residue (const field& beta_h) const {
field vh (Xh);
field rhs = b.trans_mult (beta_h);
pa.solve (rhs, vh);
test mu (Wh);
field c0h = integrate(mu*compose(projection(S,n,Cf,r), beta_h));
field mrh = b*vh + c0h - mkh;
return mrh;
}
void yield_slip::update_derivative (const field& beta_h) const {
form A = { { a, trans(b) },
{ b, -c1 } };
A.set_symmetry (c1.is_symmetric());
pA = problem(A);
}
mkgeo_ball.n
int n
Definition: mkgeo_ball.sh:150
yield_slip::Wh
space Wh
Definition: yield_slip.h:42
form
see the form page for the full documentation
yield_slip::pa
problem pa
Definition: yield_slip.h:46
mkgeo_ball.b
int b
Definition: mkgeo_ball.sh:152
d_projection_dx.h
The projection for yield-stress rheology – its derivative.
field
see the field page for the full documentation
rheolef::integrate
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:202
yield_slip::a
form a
Definition: yield_slip.h:44
yield_slip::b
form b
Definition: yield_slip.h:44
yield_slip::c1
form c1
Definition: yield_slip.h:45
space
see the space page for the full documentation
rheolef::grad
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
Definition: field_expr_terminal.h:911
rheolef::details::compose
class rheolef::details::field_expr_v2_nonlinear_node_unary compose
yield_slip::mkh
field mkh
Definition: yield_slip.h:43
yield_slip::r
Float r
Definition: yield_slip.h:40
yield_slip::S
Float S
Definition: yield_slip.h:40
yield_slip::update_derivative
void update_derivative(const field &beta_h) const
Definition: yield_slip1.icc:56
mkgeo_ugrid.boundary
int boundary
Definition: mkgeo_ugrid.sh:181
yield_slip::n
Float n
Definition: yield_slip.h:40
a
Definition: diffusion_isotropic.h:25
lh
field lh(Float epsilon, Float t, const test &v)
Definition: burgers_diffusion_operators.icc:25
mkgeo_sector.m
m
Definition: mkgeo_sector.sh:118
test
see the test page for the full documentation
problem
see the problem page for the full documentation
u
Definition: leveque.h:25
Float
see the Float page for the full documentation
yield_slip::yield_slip
yield_slip(Float S, Float n, Float Cf, Float r, const geo &omega, const geo &boundary, string approx="P1")
Definition: yield_slip1.icc:26
yield_slip::Cf
Float Cf
Definition: yield_slip.h:40
yield_slip::residue
field residue(const field &beta_h) const
Definition: yield_slip1.icc:47
u
Float u(const point &x)
Definition: transmission_error.cc:26
mkgeo_contraction.mu
mu
Definition: mkgeo_contraction.sh:193
d_projection_dx
Definition: d_projection_dx.h:26
trial
see the test page for the full documentation
yield_slip::Xh
space Xh
Definition: yield_slip.h:42
rheolef::trans
csr< T, sequential > trans(const csr< T, sequential > &a)
trans(a): see the form page for the full documentation
Definition: csr.h:455
yield_slip::pA
problem pA
Definition: yield_slip.h:47
projection
Definition: projection.h:27
geo
see the geo page for the full documentation
rheolef::details::dot
rheolef::details::is_vec dot
lambda
Definition: yield_slip_circle.h:34