an efficient C++ finite element environment
|
|
The p-Laplacian problem on a circular geometry – error analysis
int main(
int argc,
char**argv) {
Float tol = (argc > 1) ? atof(argv[1]) : 1e-15;
const geo& omega = uh.get_geo();
const space& Xh = uh.get_space();
dout <<
"err_linf = " << err_linf << endl
<< "err_lp = " << err_lp << endl
<< "err_w1p = " << err_w1p << endl;
return (err_linf < tol) ? 0 : 1;
}
see the catchmark page for the full documentation
see the field page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
The p-Laplacian problem on a circular geometry – exact solution.
see the space page for the full documentation
space_mult_list< T, M > pow(const space_basic< T, M > &X, size_t n)
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
T norm(const vec< T, M > &x)
norm(x): see the expression page for the full documentation
rheolef - reference manual
int main(int argc, char **argv)
see the integrate_option page for the full documentation
field_basic< T, M > interpolate(const space_basic< T, M > &V2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
idiststream din
see the diststream page for the full documentation
see the environment page for the full documentation
This file is part of Rheolef.
see the Float page for the full documentation
void set_family(family_type type)
odiststream dout(cout)
see the diststream page for the full documentation
see the geo page for the full documentation