Rheolef  7.1
an efficient C++ finite element environment
taylor.h
Go to the documentation of this file.
1 struct g {
26  point operator() (const point& x) const {
27  return point(-cos(pi*x[0])*sin(pi*x[1]),
28  sin(pi*x[0])*cos(pi*x[1])); }
29  g() : pi(acos(Float(-1.0))) {}
30  const Float pi;
31 };
32 struct f {
33  point operator() (const point& x) const { return 2*sqr(pi)*_g(x); }
34  f() : pi(acos(Float(-1.0))), _g() {}
35  const Float pi; g _g;
36 };
g::g
g()
Definition: taylor.h:29
f::_g
g _g
Definition: taylor.h:35
g::pi
const Float pi
Definition: cosinusprod_laplace.h:35
f::operator()
point operator()(const point &x) const
Definition: cavity_dg.h:30
Float
see the Float page for the full documentation
f::f
f()
Definition: taylor.h:34
point
see the point page for the full documentation
f::pi
const Float pi
Definition: cosinusprod_dirichlet.h:30
g::operator()
point operator()(const point &x) const
Definition: cavity_dg.h:26
g
Definition: cavity_dg.h:25
f
Definition: cavity_dg.h:29