Rheolef  7.1
an efficient C++ finite element environment
navier_stokes_dg.h

The Navier-Stokes equations with the discontinuous Galerkin method – class header

typedef Float float_type;
typedef Eigen::Matrix<field,2,1> value_type;
navier_stokes_dg (Float Re, const geo& omega, string approx);
value_type initial (string restart) const;
value_type residue (const value_type& uh) const;
void update_derivative (const value_type& uh) const;
Float space_norm (const value_type& uh) const;
Float dual_space_norm (const value_type& mrh) const;
integrate_option iopt;
form a0, b, c, mu, mp;
mutable form a1;
};
form
see the form page for the full documentation
navier_stokes_dg::a0
form a0
Definition: navier_stokes_dg.h:39
navier_stokes_dg::mp
form mp
Definition: navier_stokes_dg.h:39
navier_stokes_dg::update_derivative
void update_derivative(const value_type &uh) const
Definition: navier_stokes_dg1.icc:69
navier_stokes_dg::c
form c
Definition: navier_stokes_dg.h:39
field
see the field page for the full documentation
navier_stokes_dg::Qh
space Qh
Definition: navier_stokes_dg.h:37
navier_stokes_dg::pmu
problem pmu
Definition: navier_stokes_dg.h:41
navier_stokes_dg::stokes1
problem_mixed stokes1
Definition: navier_stokes_dg.h:43
problem_mixed
see the problem_mixed page for the full documentation
space
see the space page for the full documentation
navier_stokes_dg::a1
form a1
Definition: navier_stokes_dg.h:42
navier_stokes_dg::derivative_trans_mult
value_type derivative_trans_mult(const value_type &mrh) const
Definition: navier_stokes_dg1.icc:82
navier_stokes_dg::lh
field lh
Definition: navier_stokes_dg.h:40
navier_stokes_dg
Definition: navier_stokes_dg.h:25
navier_stokes_dg::lh0
field lh0
Definition: navier_stokes_dg.h:40
navier_stokes_dg::residue
value_type residue(const value_type &uh) const
Definition: navier_stokes_dg1.icc:62
navier_stokes_dg::mu
form mu
Definition: navier_stokes_dg.h:39
navier_stokes_dg::pmp
problem pmp
Definition: navier_stokes_dg.h:41
navier_stokes_dg::derivative_solve
value_type derivative_solve(const value_type &mrh) const
Definition: navier_stokes_dg1.icc:76
navier_stokes_dg::Re
Float Re
Definition: navier_stokes_dg.h:36
navier_stokes_dg::dual_space_norm
Float dual_space_norm(const value_type &mrh) const
Definition: navier_stokes_dg2.icc:28
navier_stokes_dg::space_norm
Float space_norm(const value_type &uh) const
Definition: navier_stokes_dg2.icc:25
problem
see the problem page for the full documentation
Float
see the Float page for the full documentation
navier_stokes_dg::kh
field kh
Definition: navier_stokes_dg.h:40
navier_stokes_dg2.icc
The Navier-Stokes equations with the discontinuous Galerkin method – class body.
navier_stokes_dg::b
form b
Definition: navier_stokes_dg.h:39
navier_stokes_dg::value_type
Eigen::Matrix< field, 2, 1 > value_type
Definition: navier_stokes_dg.h:27
navier_stokes_dg::navier_stokes_dg
navier_stokes_dg(Float Re, const geo &omega, string approx)
Definition: navier_stokes_dg1.icc:25
navier_stokes_dg::initial
value_type initial(string restart) const
Definition: navier_stokes_dg1.icc:42
navier_stokes_dg::Xh
space Xh
Definition: navier_stokes_dg.h:37
navier_stokes_dg::float_type
Float float_type
Definition: navier_stokes_dg.h:26
geo
see the geo page for the full documentation
navier_stokes_dg1.icc
The Navier-Stokes equations with the discontinuous Galerkin method – class body.
navier_stokes_dg::iopt
integrate_option iopt
Definition: navier_stokes_dg.h:38