Rheolef
7.1
an efficient C++ finite element environment
yield_slip_circle.h
The yield slip problem on a circle – exact solution
struct
u
{
Float
operator()
(
const
point
& x)
const
{
return
(1-
norm2
(x))/4 +
us
; }
u
(
Float
S,
Float
n
,
Float
Cf) :
us
(
pow
(max(
Float
(0),(0.5-S)/Cf), 1/
n
)) {}
protected
:
Float
us
;
};
struct
grad_u
{
point
operator()
(
const
point
& x)
const
{
return
-x/2; }
grad_u
(
Float
S,
Float
n
,
Float
Cf) {}
};
struct
lambda
{
Float
operator()
(
const
point
& x)
const
{
return
1./2; }
lambda
(
Float
S,
Float
n
,
Float
Cf) {}
};
mkgeo_ball.n
int n
Definition:
mkgeo_ball.sh:150
grad_u::grad_u
grad_u(Float lambda, bool is_upper)
Definition:
combustion_exact.icc:37
u::operator()
point operator()(const point &x) const
Definition:
leveque.h:26
lambda::lambda
lambda(Float S, Float n, Float Cf)
Definition:
yield_slip_circle.h:36
rheolef::pow
space_mult_list< T, M > pow(const space_basic< T, M > &X, size_t n)
Definition:
space_mult.h:120
u::us
Float us
Definition:
yield_slip_circle.h:28
u::n
Float n
Definition:
mosolov_exact_circle.h:30
rheolef::norm2
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
Definition:
vec.h:379
u::u
u()
Definition:
zalesak.h:33
u
Definition:
leveque.h:25
grad_u::n
Float n
Definition:
mosolov_exact_circle.h:38
Float
see the Float page for the full documentation
lambda::operator()
Float operator()(const point &x) const
Definition:
yield_slip_circle.h:35
point
see the point page for the full documentation
grad_u::operator()
point operator()(const point &x) const
Definition:
combustion_exact.icc:35
grad_u
Definition:
combustion_exact.icc:34
lambda
Definition:
yield_slip_circle.h:34