Rheolef
7.1
an efficient C++ finite element environment
p_laplacian_circle.h
The p-Laplacian problem on a circular geometry – exact solution
struct
u_exact
{
Float
operator()
(
const
point
& x)
const
{
return
(1 -
pow
(
norm2
(x),
p
/(2*
p
-2)))/((
p
/(
p
-1))*
pow
(2.,1/(
p
-1)));
}
u_exact
(
Float
q) :
p
(q) {}
protected
:
Float
p
;
};
struct
grad_u
{
point
operator()
(
const
point
& x)
const
{
return
- (
pow
(
norm2
(x),
p
/(2*
p
-2) - 1)/
pow
(2.,1/(
p
-1)))*x;
}
grad_u
(
Float
q) :
p
(q) {}
protected
:
Float
p
;
};
grad_u::grad_u
grad_u(Float lambda, bool is_upper)
Definition:
combustion_exact.icc:37
rheolef::pow
space_mult_list< T, M > pow(const space_basic< T, M > &X, size_t n)
Definition:
space_mult.h:120
rheolef::norm2
T norm2(const vec< T, M > &x)
norm2(x): see the expression page for the full documentation
Definition:
vec.h:379
p
Definition:
sphere.icc:25
u_exact::operator()
point operator()(const point &x) const
Definition:
interpolate_RTk_polynom.icc:126
u_exact::u_exact
u_exact(size_t d1, Float w1=acos(Float(-1)))
Definition:
interpolate_RTk_polynom.icc:144
u_exact::p
Float p
Definition:
p_laplacian_circle.h:30
Float
see the Float page for the full documentation
u_exact
Definition:
interpolate_RTk_polynom.icc:125
point
see the point page for the full documentation
grad_u::operator()
point operator()(const point &x) const
Definition:
combustion_exact.icc:35
grad_u::p
Float p
Definition:
p_laplacian_circle.h:37
grad_u
Definition:
combustion_exact.icc:34