Rheolef
7.1
an efficient C++ finite element environment
poisson_robin.icc
The Poisson problem with Robin boundary condition – solver function
field
poisson_robin
(
Float
Cf,
const
geo
&
boundary
,
const
field
&
lh
) {
const
space
& Xh =
lh
.get_space();
trial
u
(Xh);
test
v (Xh);
form
a
=
integrate
(
dot
(
grad
(
u
),
grad
(v))) + Cf*
integrate
(
boundary
,
u
*v);
field
uh (Xh);
problem
p
(
a
);
p
.solve (
lh
, uh);
return
uh;
}
form
see the form page for the full documentation
field
see the field page for the full documentation
rheolef::integrate
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&! is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition:
integrate.h:202
space
see the space page for the full documentation
rheolef::grad
std::enable_if< details::is_field_convertible< Expr >::value,details::field_expr_v2_nonlinear_terminal_field< typename Expr::scalar_type,typename Expr::memory_type,details::differentiate_option::gradient >>::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
Definition:
field_expr_terminal.h:911
p
Definition:
sphere.icc:25
mkgeo_ugrid.boundary
int boundary
Definition:
mkgeo_ugrid.sh:181
a
Definition:
diffusion_isotropic.h:25
lh
field lh(Float epsilon, Float t, const test &v)
Definition:
burgers_diffusion_operators.icc:25
test
see the test page for the full documentation
problem
see the problem page for the full documentation
u
Definition:
leveque.h:25
Float
see the Float page for the full documentation
u
Float u(const point &x)
Definition:
transmission_error.cc:26
trial
see the test page for the full documentation
poisson_robin
field poisson_robin(Float Cf, const geo &boundary, const field &lh)
Definition:
poisson_robin.icc:25
geo
see the geo page for the full documentation
rheolef::details::dot
rheolef::details::is_vec dot